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Approximation and compression of
piecewise smooth functions

By Paolo Prandoni1 and Martin Vetterli1,2

1Laboratory for Audio-Visual Communications, Swiss Federal Institute of
Technology, CH-1015 Lausanne, Switzerland

2Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, USA

Wavelet or sub-band coding has been quite successful in compression applications,
and this success can be attributed in part to the good approximation properties
of wavelets. In this paper, we revisit rate–distortion (RD) bounds for the wavelet
approximation of piecewise smooth functions, and piecewise polynomial functions
in particular. We contrast these results with RD bounds achievable using an oracle-
based method. We then introduce a practical dynamic programming algorithm, which
achieves performance similar to the oracle method, and present experimental results.

Keywords: data compression; data modelling; wavelet approximation;
rate–distortion optimality; dynamic allocation; joint segmentation quantization

1. Introduction

Wavelets have had an important impact on signal processing theory and practice
and, in particular, wavelets play a key role in compression, image compression being
a prime example (Vetterli & Kovačević 1995). This success is linked to the ability
of wavelets to capture efficiently both stationary and transient behaviours. In signal
processing parlance, wavelets avoid the problem of the window size (as in the short-
time Fourier transform, for example), since they work with many windows due to
the scaling property.

An important class of processes encountered in signal processing practice can be
thought of as ‘piecewise stationary’. As an example, speech is often analysed using
such a model, for example in local linear predictive modelling as used in speech
compression; such processes can be generated by switching between various station-
ary processes. Wavelet methods are possible models as well, being able both to fit
the stationary part and capture the breakpoints. In the deterministic case, ‘piece-
wise smooth functions’ are a class of particular interest. For an example consider
piecewise polynomial functions. Again, wavelets are good approximants if simple
nonlinear approximation schemes are used. The performance of wavelets in such a
context is again linked to their ability to fit polynomials by scaling functions (up to
the appropriate approximation order) while capturing the breakpoints efficiently by
a small number of wavelet coefficients.

When one is interested in compression applications, a key question is not just
the approximation behaviour, but the effective rate-distortion (RD) characteristic of
schemes where wavelets and scaling functions are used as elementary approximation
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atoms. Here, we are moving within an operational framework in which a well-defined
implementable algorithmic procedure is associated to each coding scheme. In this
operational scenario, a fundamental measure of performance is provided by the RD
behaviour specific to the algorithm: given a certain rate of, say, r bits, the RD
curve yields the overall amount of distortion (measured by some suitably chosen
metric) between the original data and the data which are reconstructed at the output
of an encoding–decoding scheme when the amount of bits exchanged between the
coder and the decoder is exactly r. In this sense, the rate is always finite (we deal
with implementable algorithms) and the performance measure becomes dependent on
much more than the choice of basis functions. Pioneering work by Shannon (the RD
concept) and Kolmogorov (the epsilon-entropy concept) spurred much interesting
theoretical work on these types of ultimate lower bound on coding performance
(Donoho et al . 1998). Most of the results, however, albeit very intriguing, are of
limited practical significance and in many cases only (hopefully tight) upper bounds
on the performance of a particular coding algorithm can be obtained with relative
ease; this is the case with our contribution. It would be beyond the scope of the paper
to provide a more general introduction to algorithmic RD analysis; a very exhaustive
overview of the topic, with a particular attention to transform coding methods, can
be found in a recent article by Donoho et al . (1998).

The rest of the paper is organized as follows: first we will review some recent work
in wavelets and sub-band coding, recalling some now classic results on approximat-
ing piecewise smooth functions or piecewise stationary processes†. Then, piecewise
polynomial functions will be specifically analysed, and the differences between a
wavelet-based and an oracle-based method will be shown. An oracle method is a
coding scheme in which we assume we can obtain all function parameters with arbi-
trary accuracy from an omniscient ‘oracle’; it is a commonly used theoretical device
to infer an ideal limit on the performance of practical coding schemes. Next, we
will present a practical method based on dynamic programming whose performance
approaches that of the oracle method, and conclude with some experimental results.

2. The compression problem

Compression is the trade-off between description complexity and approximation qual-
ity. Given an object of interest, or a class of objects, one studies this trade-off by
choosing a representation (e.g. an orthonormal basis) and then deciding how to
describe the object parsimoniously in the representation. Such a parsimonious rep-
resentation typically involves approximation.

† A word of caution on the term ‘stationary’ is perhaps necessary here. The standard definition of a
stationary process involves statistics of all orders across an ensemble of realizations. When the stationarity
conditions are met, a fundamental result of signal processing states that the spectral properties of linear
function operators (e.g. filters) defined in a deterministic setting retain their meaningfulness in the
stochastic domain; in terms of signal modelling, this is equivalent to saying that a single model is able
to capture the entirety of the process. In practice, signal processing applications almost always deal with
a single finite-length realization of an unknown process whose stochastic description is very sketchy. In
this case, it is often advantageous to split the signal into pieces and use a different linear model for each
piece. In this sense, piecewise stationarity is operatively defined by the ability to use a single model over
a given piece of data. Alternatively, one could look at a piecewise stationary signal as the output of a
system in which an unknown switching process selects between many possible processes, all of which
are assumed stationary. This liberal use of the term ‘stationary’ is clearly an abuse of language, but its
connotations are usually univocally clear in a signal processing scenario.
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For example, for a function described with respect to an orthonormal basis, only a
subset of basis vectors might be used (subspace approximation) and the coefficients
used in the expansion are approximated (quantization of the coefficients). Thus,
both the subspace approximation and the coefficient quantization contribute to the
approximation error. More formally, for a function f in L2(R) for which {ϕn} is an
orthonormal basis, we have the approximate representation

f̂ =
∑
n∈I

α̂ϕn, α̂n = Q[〈ϕn, f〉], (2.1)

where I is an index subset and Q[·] is a quantization function, like, for example, the
rounding to the nearest multiple of a quantization step �.

Typically, the approximation error is measured by the L2 norm, or (mean) squared
error

ε = ‖f − f̂‖2
2. (2.2)

The description complexity corresponds to describing the index set I, as well as
describing the quantized coefficients α̂n. The description complexity is usually called
the rate R, corresponding to the number of binary digits (or bits) used. Therefore
the approximation f̂ of f leads to a RD pair (R, ε), indicating one possible trade-off
between description complexity and approximation error. The example just given,
despite its simplicity, is quite powerful and is actually used in practical compression
standards. It also raises the following questions.

(Q1) What are classes of objects of interest and for which the RD trade-off can be
well understood?

(Q2) If approximations are done in bases, what are good bases to use?

(Q3) How do we choose the index set and the quantization?

(Q4) Are there objects for which approximation in bases is suboptimal?

Historically, (Q1) has been addressed by the information theory community in the
context of RD theory. Shannon (1948) posed the problem in his landmark paper
and proved RD results in Shannon (1959). The classic book by Berger (1971) is
still a reference on the topic. Yet, RD theory has been mostly concerned with exact
results within an asymptotic framework (the so-called large-block-size assumption
together with random coding arguments). Thus, only particular processes (e.g. jointly
Gaussian processes) are amenable to this exact analysis, but the framework has been
used extensively, in particular in its operational version (when practical schemes are
involved) (see, for example, the review by Ortega & Ramchandran (1998)). It is to
be noted that RD analysis covers all cases (e.g. small rates with large distortions)
and that the case of very fine approximation (or very large rates) is usually easier
but less useful in practice.

In the stationary jointly Gaussian case (Q2) has a simple answer, based on RD
theory. For any process, the Karhunen–Loève basis leads to the best linear approx-
imation, due to its decorrelating properties. In the jointly Gaussian case the best
possible approximation indeed happens to be a linear approximation, since decorre-
lation implies statistical independence. Yet, not all things in life are jointly Gaussian,
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and more powerful techniques than linear approximation can achieve a better RD
trade-off when the rate is constrained; that is where wavelets come into play, in con-
junction with more general nonlinear approximation strategies†. For processes which
are piecewise smooth (e.g. images), the abrupt changes are well captured by wavelets,
and the smooth or stationary parts are efficiently represented by coarse approxima-
tions using scaling functions. Both practical algorithms (e.g. the EZW algorithm of
Shapiro (1993)) and theoretical analyses (Cohen et al . 1997; Mallat & Falzon 1998)
have shown the power of approximation within a wavelet basis. An alternative is to
search large libraries of orthonormal bases, based for example on binary sub-band
coding trees. This leads to wavelet packets (Coifman & Wickerhauser 1992) and RD
optimal solutions (Ramchandran & Vetterli 1993).

(Q3) is more complex than it looks at first sight. If there was no cost associated
with describing the index set, then clearly I should be the set {n} such that

|〈ϕn, f〉n∈I | � |〈ϕm, f〉|m/∈I . (2.3)

However, when the rate for I is accounted for, it might be more efficient to use
a fixed set I for a class of objects. For example, in the jointly Gaussian case, the
optimal procedure chooses a fixed set of Karhunen–Loève basis vectors (namely those
corresponding to the largest eigenvalues) and spends all the rate to describe the
coefficients with respect to these vectors. Note that a fixed subset corresponds to a
linear approximation procedure (before quantization, which is itself nonlinear), while
choosing a subset as in (2.3) is a nonlinear approximation method.

It is easy to come up with examples of objects for which nonlinear approximation
is far superior to linear approximation. Consider a step function on [0, 1], where the
step location is uniformly distributed on [0, 1]. Take the Haar wavelet basis as an
orthonormal basis for [0, 1]. It can be verified that the approximation error using
M terms is of the order of εL ∼ 1/M for the linear case, and of εNL ∼ 2−M for a
nonlinear approximation using the M largest terms. However, this is only the first
part of the RD story, since we still have to describe the M chosen terms. This RD
analysis takes into account that a certain number of scales J have to be represented,
and at each scale, the coefficients require a certain number of bits. This split leads
to a number of scales J ∼ √

R. The error is the sum of errors of each scale, each of
which is on the order of 2−R/J . Together, we get

DNL(R) ∼
√
R2−√

R (2.4)

The quantization question is relatively simple if each coefficient αn is quantized
by itself (so-called scalar quantization). Quantizing several coefficients together (or
vector quantization) improves the performance, but increases complexity. Usually, if

† The notion of ‘best’ basis becomes slightly tricky if we allow for signal-dependent bases (to which
the KLT also belongs). Indeed, suppose we want to code the Mona Lisa image; then the best basis is
clearly that in which the first vector is the Mona Lisa image itself: with this choice we need only one
bit to code the data. Yet the coding gain is entirely offset by the cost of informing the decoder of the
basis ‘structure’. In fact, the choice of transform must be a compromise between sufficient generality
and power of representation within a class of signals. Piecewise smooth functions are well approximated
by wavelets with enough vanishing moments and by local polynomial expansions. These models are
sufficiently general to apply to a wide variety of signals, even departing in some degree from the piecewise
polynomial template. Other issues in the choice of transform include computational efficiency and RD
behaviour in the case of quantized truncated representations. The comparison in the paper addresses
these last two issues specifically.
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a ‘good’ basis is used and complexity is an issue, scalar quantization is the preferred
method.

The fourth question is a critical one. While approximation in orthonormal bases
is very popular, it cannot be the end of the story. Just as not every stochastic
process is Gaussian, not all objects will be well represented in an orthonormal basis.
In other words, fitting a linear subspace to arbitrary objects is not always a good
approximation, but even for objects where basis approximation does well, some other
approximation method might do much better. In our step-function example studied
earlier, a simple-minded coding of the step location and the step value leads to a RD
behaviour

D′(R) ∼ 2−R/2. (2.5)

In the remainder of this paper we are going to study in more detail the difference
between wavelet and direct approximation of piecewise polynomial signals.

3. RD upper bounds for a piecewise polynomial function

Consider a continuous-time signal s(t), t ∈ [a, b], composed of M polynomial pieces;
assume that the maximum degree of any polynomial piece is less than or equal to
N and that each piece (and therefore the entire signal) is bounded in magnitude by
some constant A. The signal is uniquely determined by the M polynomials and by
M − 1 internal breakpoints; by augmenting the set of breakpoints with the interval
extremes a and b, we can write

s(t) =
N∑

n=0

p(i)
n tn = pi(t) for ti � t < ti+1, (3.1)

where a = t0 < t1 < · · · < tM−1 < tM = b are the breakpoints and the p
(i)
n are the

ith polynomial coefficients (with p
(i)
n = 0 for n larger than the polynomial degree);

let T = (b − a).

(a) Polynomial approximation

In this section we will derive an upper bound on the RD characteristic for a
quantized piecewise polynomial approximation of s(t). For the time being, assume
that the values for M , for the degrees of the polynomial pieces and for the internal
breakpoints, are provided with arbitrary accuracy by an oracle. The derivation of
the operational RD bound will be carried out in three steps: first we will determine a
general RD upper bound for the single polynomial pieces; secondly, we will determine
an RD upper bound for encoding the breakpoint values; finally, we will determine
the jointly optimal bit allocation for the whole signal.

(i) Encoding of one polynomial piece

Consider the ith polynomial of degree Ni, defined over the support Ii = [ti, ti+1]
of width Si. Using a local Legendre expansion (see Appendix A) we can write (the
subscript i is dropped for clarity throughout this section):

p(t) =
N∑

n=0

pnt
n =

N∑
n=0

2n + 1
S

lnLI(n; t), (3.2)
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where LI(n; t) is the nth-degree Legendre polynomial over I; due to the properties
of the expansion it may be shown that

|ln| � AS (3.3)

for all n. The squared error after quantizing the coefficients can be expressed as

e2 =
N∑

n=0

(
2n + 1

S

)2

(ln − l̂n)2
∫ ti+1

ti

L2
I(n; t) dt

= S−1
N∑

n=0

(2n + 1)(ln − l̂n)2, (3.4)

where l̂n are the quantized values. Assume using for each coefficient a different bn-bit
uniform quantizer over the range specified by (3.3) for a step size of 2AS2−bn ; the
total squared error can be upper bounded as

e2 � Dp = A2S
N∑

n=0

(2n + 1)2−2bn . (3.5)

For a global bit budget of Rp bits, the optimal allocation is found by solving the
following reverse water-filling problem:

∂Dp

∂bn
= const.,

∑
bn = Rp, (3.6)

which yields

bn =
Rp

N + 1
+ log2

√
2n + 1

C̄
, (3.7)

with

C̄ =
[ N∏

n=0

(2n + 1)
]1/(N+1)

; (3.8)

since the geometric mean is always less than or equal to the arithmetic mean we have
C̄ � (N +1), and we finally obtain the following upper bound for the ith polynomial
piece:

Dp(Rp) � A2S(N + 1)22−(2/N+1)Rp . (3.9)

(ii) Encoding of switchpoints

Assume that the M + 1 switchpoints ti, as provided by the oracle, are quantized
with a uniform quantizer over the entire support of the signal. In terms of the overall
mean-squared error (MSE), the error relative to each quantized switchpoint can be
upper bounded by (see figure 1a):

e2
ti

� 4A2 |ti − t̂i|. (3.10)

Again, the magnitude of the error is at most one half of the quantizer’s step size, so
that for a given switchpoint we have

Dt(Rt) � 2A2T2−Rt , (3.11)

where Rt is the quantizer’s rate.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Approximation and compression of piecewise smooth functions 2579

A

–A

(a) (b)

1p

p2

t t̂

τ
t

h2–j0 (h + 1)2–j0

Figure 1. Encoding of switchpoints: (a) true error (light area) and general upper bound (dark
area); (b) location of the jump at a given wavelet scale.

(iii) Composite RD bound

The global distortion bound for s(t) is obtained additively as

D �
M∑
i=1

Dpi(Rpi) +
M+1∑
i=0

Dti(Rti), (3.12)

where Dpi(Rpi) and Dti(Rti) are the bounds in (3.9) and (3.11), respectively, and
where the subscript denotes the index of the polynomial pieces.

In order to obtain the optimal bit allocation for the composite polynomial func-
tion given an overall rate, it would be necessary to find the constant-slope operating
points for all the summation terms in (3.12), as shown in (3.6); the resulting for-
mulae, however, would be entirely impractical due to their dependence on all the
polynomial parameters across the whole function. Instead, we choose to derive a
coarser but general upper bound by introducing the following simplifications: (1) all
polynomial pieces are assumed of maximum degree N ; this implies that, for polyno-
mials of lower degree, bits are also allocated to the zero coefficients; (2) the support
of each polynomial piece Si is ‘approximated’ by T , the entire function’s support;
together with the previous assumption, this means that the water-filling algorithm
will assign the same number of bits Rp to each polynomial piece; (3) the origin of
the function support (a) is either known or irrelevant; this reduces the number of
encoded switchpoints to M ; and (4) all switchpoints are encoded at the same rate
Rt. With these simplifications the RD bound becomes

D(R) � A2TM(2−Rt+1 + (N + 1)22−(2/N+1)Rp), (3.13)

where the total bit rate is R = M(Rt + Rp). By the usual reverse water-filling
argument we obtain the optimal allocation

Rp =
N + 1
N + 3

R

M
+ log2 K, (3.14)

Rt =
2

N + 3
R

M
− log2 K, (3.15)

with K = (2N + 2)(N+1)/(N+3). Using the relation (for N > 0)

2K + (N + 1)2K−2/N+1 � 2(N + 1)2, (3.16)
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a simplified global upper bound is finally

DP (R) � 2A2T M(N + 1)22−(2/N+3)(R/M). (3.17)

(b) Wavelet-based approximation

In this section we will obtain an upper bound for the case of a quantized nonlinear
approximation of s(t) using a wavelet basis over [a, b]. The derivation follows the lines
in the manuscript by Cohen et al . (1997) and assumes the use of compact support
wavelets with at least N + 1 vanishing moments (Cohen et al . 1993).

(i) Distortion

If the wavelet has N +1 vanishing moments, then the only non-zero coefficients in
the expansion correspond to wavelets straddling one or more switchpoints; since the
wavelet also has a compact support, each switchpoint affects only a finite number of
wavelets at each scale, which is equal to the length of the support itself. For N + 1
vanishing moments, the wavelet support L satisfies L � 2N + 1 and therefore, at
each scale j in the decomposition, the number of non-zero coefficients Cj is bounded
as

L � Cj � ML. (3.18)

For a decomposition over a total of J levels, if we neglect the overlaps at each scale
corresponding to wavelets straddling more than a single switchpoint we can upper
bound the total number of non-zero coefficients C as

C � MLJ. (3.19)

It can be shown (see, for example, Mallat 1997) that the non-zero coefficients decay
with increasing scale as

|cj,k| � ATW2−j/2, (3.20)

where W is the maximum of the wavelet’s modulus. Using the same high-resolution
b-bit uniform quantizer for all the coefficients with a step-size of 2ATW2−b we obtain
the largest scale before all successive coefficients are quantized to zero:

J = 2b − 2. (3.21)

With this allocation choice the total distortion bound is D = Dq + Dt where

Dq =
∑

k

J∑
j=0

(cj,k − ĉj,k)2 (3.22)

is the quantization error for the coded non-zero coefficients and where

Dt =
∑

k

+∞∑
j=J+1

c2j,k (3.23)

is the error due to the wavelet series truncation after scale J (in both summations
the index k runs over the non-zero coefficients in each scale). Upper bounding the
quantization error in the usual way and using the bound in (3.20) for each discarded
coefficient, we obtain

D � C(ATW )22−2b + ML(ATW )22−J = ML(ATW )2(1 + 1
4J)2−J . (3.24)
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(ii) Rate

Along with the quantized non-zero coefficients, we must supply a significance map
indicating their position; due to the structure of s(t), two bits per coefficients suffice
to indicate which of the next-scale wavelet siblings (left, right, both or none) are
non-zero. The total rate therefore is

R = C(b + 2) � MLJ(1
2J + 3), (3.25)

where we have used (3.19) and (3.21). In our high-resolution hypothesis it is surely
going to be b � 4 and therefore we can approximate (3.25) as

R � MLJ2. (3.26)

(iii) Global upper bound

Equation (3.24) provides a distortion bound as a function of J ; in turn, J is a
function of the overall rate as in (3.26). Combining the results we obtain the overall
RD bound

DW (R) � (ATW )2M(2N + 1)
(
1 + 1

4

√
1

2N + 1
R

M

)
2−

√
(1/2N+1)(R/M), (3.27)

where we have assumed a minimum support wavelet, for which L = 2N + 1.

(c) Commentary

To recapitulate, the two upper bounds obtained in the previous sections are of the
form:

polynomial approximation DP (R) = C ′
p2

−CpR,

wavelet approximation DW (R) = C ′
w(1 + α

√
CwR)2−√

CwR.

Since these are upper bounds, we are especially concerned with their tightness.
Unfortunately, as we have seen, many simplifications have been introduced in the
derivation, some of which are definitely rather crude; we will therefore concentrate on
the rate of decay of the RD function rather than on the exact values of the constants.
In order to gauge the applicability of the theoretical bounds, we can try to compare
them to the actual performance of practical coding systems. A word of caution
is, however, necessary: in order to implement the coding schemes described above,
which are derived for continuous-time functions, a discretization of the test data is
necessary; as a consequence, an implicit granularity of the time axis is introduced,
which limits the allowable range for both the breakpoint quantization rate and for
the number of decomposition levels in the wavelet transformation. Unfortunately,
computational requirements soon limit the resolution of the discretization: in our
experiments we have used 216 points. The two approximation techniques have been
applied to randomly generated piecewise polynomial functions with parameters A =
1, T = 1, N = 4 and M = 4; Daubechies wavelets with five vanishing moments on the
[0, 1] interval have been used for the decomposition. The results are shown in figure 2:
the solid lines and the dashed lines display the RD bound and the operational RD
curve, respectively, for the polynomial and wavelet approximation strategies averaged
over 50 function realizations.
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Figure 2. Theoretical (solid) and experimental (dashed) RD curves.

A closer inspection of the RD curves shows that, especially for the wavelet case,
there appears to be a large numerical offset between theoretical and practical values
even though the rate of decay is correct. This simply indicates that the bounds for
the constants in (3.27) are exceedingly large and the question is whether we can
arrive at tighter estimates. In the absence of a detailed statistical description for the
characteristic parameters of s(t), the answer remains rather elusive in the general
case; we can, however, try to develop our intuition by studying in more detail a
toy problem involving minimal-complexity elements and a simple statistical model
for the approximated function. The availability of a particular statistical model for
the generating process allows us to derive an RD result in expectation, which is
hopefully tighter. Consider the simple case in which N = 0, M = 2, T = 1 and
A = 1

2 : the resulting s(t) is simply a step function over, say, [0, 1); we will assume
that the location of the step transition t0 is uniformly distributed over the support
and that the values of the function left and right of the discontinuity are uniformly
distributed over [−1

2 ,
1
2 ]. Having a piecewise constant function allows us to use a

Haar wavelet decomposition over the [0, 1] interval; since the Haar family possesses
a single vanishing moment and since there is no overlap between wavelets within a
scale, the following facts hold:

(1) because of the absence of overlap, at each scale we have exactly one non-zero
coefficient; the relation in (3.19) becomes exact:

C = J ; (3.28)

(2) under the high resolution hypothesis for a b-bit quantizer, the quantization
error becomes a uniform random variable over an interval half a step wide; the
expected error for each quantized coefficient is therefore 1

122
−2b;
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Figure 3. Theoretical (solid) and experimental (dashed) RD curves for the step function
approximation: (a) Haar wavelet approximation; (b) polynomial approximation.

(3) the series truncation error (3.23) is, in expectation (see Appendix B),

E[Dt] = ( 1
36)2

−(J+1); (3.29)

(4) again, due to the non-overlapping properties of the Haar wavelet, we can
rewrite (3.26) simply as R � J2.

With these values, the RD curve, in expectation, becomes

DW (R) � 1
72(1 + 3

4
√
R)2−√

R. (3.30)

Figure 3a displays this curve along with the experimental results (dashed line); we
can now see that the numerical values agree to within the same order of magnitude.

For completeness, the expected RD behaviour for the polynomial approximation of
the above step function (obtained with a similar simplified analysis) turns out to be
DP (R) = 1/(6

√
2) 2−R/2 and the curve, together with its experimental counterpart,

is displayed in figure 3b.

4. RD optimal approximation

We have seen that the direct polynomial approximation displays a far better RD
asymptotic behaviour than the standard nonlinear wavelet approximation. However,
the polynomial bound was derived under two special hypotheses which are not gen-
erally met in practice: the availability of an ‘oracle’ and the use of high-resolution
quantizers. Since the goal of many approximation techniques is a parsimonious repre-
sentation of the data for compression purposes, the question arises naturally: what is
the best coding strategy in a practical setting where the polynomial parameters are
initially unknown and the bit rate is severely constrained? The problem can be cast
in an operational RD framework where the objective is to ‘fit’ different polynomial
pieces to the function subject to a constraint on the amount of resources used to
describe the modelling and where the goodness of fit is measured by a global cost
functional such as the MSE. In this constrained allocation approach, both break-
points and local models must be determined jointly, since the optimal segmentation
is a function of the family of approximants we allow for and of the global bit rate.
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In particular, for low rates, the available resources might not allow for a faithful
encoding of all pieces and a globally optimal compromise solution must be sought
for, possibly by lumping several contiguous pieces into one or by approximating the
pieces by low-degree polynomials which have lighter description complexity.

In the following, we will illustrate a ‘practical’ algorithm which addresses and
solves these issues, and whose performance matches and extends to the low-bit-
rate case the oracle-based polynomial modelling. Note that now we are entering an
algorithmic scenario where we perforce deal with discrete-time data vectors rather
than continuous-time functions; similarly to the experimental results of the previous
section, granularity of the involved quantities and computational requirements are
now important factors.

(a) Joint segmentation and allocation

Consider a K-point data vector x = xK
1 , which is a sampled version of a piecewise

polynomial function s(t) over a given support interval. The goal is to fit the data
with local polynomial models so as to minimize the global MSE of the approximation
under a given rate constraint. This defines an operational RD curve which is tied
to the family of approximation models we choose to use. This initial choice is the
crucial ‘engineering’ decision of the problem and is ruled by a priori knowledge
on the input data (polynomial pieces of maximum degree N) and by economical
considerations in terms of computational requirements. In particular, we choose a
fixed limited set of possible rates associated to a polynomial model of given degree,
with quantization of the individual coefficients following the line of (3.7). The validity
of such design parameters can only be assessed via the performance measure yielded
by the operational RD curve.

In the following we will assume a family of Q polynomial models, which is the
aggregate set of polynomial prototypes from degree 0 to N with different quantization
schemes for the parameters (more details later). For the data vector x define a
segmentation t as a collection of n + 1 time indices:

t = {t0 = 1 < t1 < t2 < · · · < tn−1 < tn = K + 1}.
The number of segments defined by t is σ(t), 1 � σ(t) � K, with the ith segment
being x

ti+1−1
ti

; segments are strictly disjoint. Let T[1,K] be the set of all possible
segmentations for x, which we will simply write as T when the signal range is self-
evident; it is clear that |T[1,K]| = 2K−1. Parallel to a segmentation t, define an
allocation w(t) as a collection of σ(t) model indices wi, 1 � wi � Q; let W (t) be the
set of all possible allocations for t, with |W (t)| = Qσ(t). Again, when the dependence
on the underlying segmentation is clear, we will simply write w instead of w(t).

For a given segmentation t and a related allocation w, define R(t,w) as the cost,
in bits, associated to the sequence of σ(t) polynomial models and define D(t,w) as
the cumulative squared error of the approximation. Since there is no overlap between
segments and the polynomial models are applied independently, we can write

D(t,p) =
σ(t)∑
i=1

‖p̂(wi)V(ti+1−ti) − x
ti+1−1
ti

‖2 =
σ(t)∑
i=1

d2(p̂(wi); ti, ti+1), (4.1)

where V is a Vandermonde matrix of size N × (ti+1 − ti) and where p̂(wi) is an
(N + 1)-element vector containing the estimated polynomial coefficients for the ith
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segment quantized according to model wi (the high-order coefficients being zero for
model orders less than N). We will assume that the polynomial coefficients are coded
independently and that their cost in bits is a function b(·) of the model’s index only.
An important remark at this point is that, by allowing for a data-dependent seg-
mentation, information about the segmentation and the allocation themselves must
be provided along with the polynomial coefficients. This takes the form of side infor-
mation, which uses up part of the global bit budget of the RD optimization and must
therefore be included in the expression for the overall rate. We will then write

R(t,w) =
σ(t)∑
k=1

(c + b(wk)) =
σ(t)∑
k=1

r(pk), (4.2)

where c is the side information associated to a new segment specifying its length and
the relative polynomial order and quantization choice.

Our goal is to arrive at a minimization of the global squared error with respect
to the local polynomials and to the data segmentation using the global rate as a
parameter controlling the number of segments and the distribution of bits amongst
the segments. Formally, this amounts to solving the following constrained problem:

min
t∈T

min
w∈W (t)

{D(t,w)}, R(t,w) � RC. (4.3)

While at first the task of minimizing (4.3) seems daunting, requiring O(QN ) explicit
comparisons, we will show how it can be solved in polynomial time for almost all
rates using standard optimization techniques.

(b) Efficient solution

The problem of optimal resource allocation has been thoroughly studied in the
context of quantization and coding for discrete datasets (Gersho & Gray 1992) and
has been successfully applied to the context of signal compression and analysis (Ram-
chandran & Vetterli 1993; Xiong et al . 1994; Prandoni et al . 1997). In the following
we will rely extensively on the results by Shoham & Gersho (1988), to which the
reader is referred for details and proofs.

For the time being assume that a segmentation t0 is given (a fixed-window seg-
mentation, for instance) and that the only problem is to find the optimal allocation
of polynomial pieces; each allocation defines an operational point in the RD plane
as in figure 4a and the inner minimization in (4.3) requires us to find the allocation
yielding the minimum distortion amongst all the allocations with the same given
rate. However, if we restrict our search to the convex hull of the entire set of RD
points, the minimization can be reformulated using Lagrange multipliers: define a
functional J(λ) = D(t,w) + λR(t,w); if, for a given λ,

w∗ = arg min
w∈W (t0)

{J(λ)}, (4.4)

then w∗ (star superscripts denote optimality) defines a point on the convex hull
which solves the problem

min
w∈W (t0)

{D(t0,w)}, R(t,w) � R(t0,w∗). (4.5)
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(R(t1, w), D(t1, w)) 
(R(t2, w), D(t2, w)) 

RR

D D

(a) (b)

Figure 4. RD convex hulls: (a) convex hull for a single segmentation;
(b) composite convex hull for two segmentations.

If we now let the segmentation vary, we simply obtain a larger population of oper-
ational RD points which are indexed by segmentation-allocation pairs as in figure 4b.
Again, if we choose to restrict the minimization to the convex hull of the composite
set of points, we can solve the associated Lagrangian problem as a double minimiza-
tion:

J∗(λ) = min
t∈T

min
w∈W (t)

{J(λ)}; (4.6)

it should be noted that the restriction to the convex hull is of little practical limitation
when the set of RD points is sufficiently dense; this is indeed the case given the
cardinalities of T and W .

Even in the form of (4.6) the double minimization would still require an exhaustive
search over all RD points, in addition to a search for the optimal λ. By taking the
structure of rate and error into account, we can, however, rewrite (4.6) as

J∗(λ) = min
t∈T

min
w∈W (t)

{σ(t)∑
k=1

(d2(p̂(wk); tk, tk+1) + λr(wk))
}
. (4.7)

Since all quantities are non-negative and the segments are non-overlapping, the inner
minimization over W (t) can be carried out independently term-by-term, reducing the
number of comparisons to Qσ(t) per segmentation. Now the key observation is that,
whatever the segmentation, all segments are coded with the same RD trade-off as
determined by λ; therefore, for a given λ, we can determine the optimal t (in the sense
of (4.3)) using dynamic programming (Bellman 1957). Indeed, suppose a breakpoint
t belongs to t∗, the optimal segmentation; then it is easy to see that

J∗
[1,N ](λ) = J∗

[1,t](λ) + min
t∈T[t,N]

min
w∈W (t)

{J(λ)} (4.8)

(where subscripts indicate the signal range for the minimization). In other words,
if t is an optimal breakpoint, the optimal cost functional for xt−1

1 is independent of
subsequent data. This defines an incremental way to jointly determine the optimal
segmentation and allocation as a recursive optimality hypothesis for all data points:
for 0 � t � N ,

J∗
[1,t](λ) = min

1�τ�t−1
{J∗

[1,τ ](λ) + min
1�w�Q

{d2(p̂(w); τ, t) + λr(w)}} (4.9)
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Figure 5. Theoretical (solid) and experimental (dashed) RD curves for the
dynamic segmentation algorithm.

(where J∗
[1,0](λ) = 0). At each step t, only the new J∗

[1,t](λ) and the minimizing
τ need be stored. The total number of comparisons for the double minimization
is therefore O(K2). The latter must be iterated over λ until the rate constraint
in (4.3) is met; luckily, the overall rate is a monotonically non-increasing function of
λ (for a proof, see again Shoham & Gersho (1988)) so that the optimal value can be
found with a fast bisection search (see Ramchandran & Vetterli 1993).

(c) Implementation and results

In the implementation of the dynamic segmentation algorithm we have chosen a
simplified set of quantization schemes. At low bit rates, equation (3.7) states that the
optimal bit distribution for a set of polynomial coefficients is basically uniform. We
choose four possible allocations of 4, 8, 12 and 16 bits for the single coefficient, with
the total bit rate of a polynomial piece linearly dependent on its degree. A least-
squares problem is solved for all orders from zero to N for each possible segment
in an incremental fashion paralleling (4.9); this involves extending the QR factors
of an order-N Vandermonde matrix by a new point at each step, which can be
performed efficiently by means of Givens rotations. Side information for each segment
is composed of two bits to signal the quantization scheme, �log2 N� bits for the order
of the polynomial model and �log2 K� bits for the length of the segment. Finally,
the computation in (4.9) can be efficiently organized on a trellis, where intermediate
data are stored prior to the iteration over λ; further algorithmic details, omitted
here, can be found in Prandoni (1999). The final computational requirements for the
global minimization are on the order of O(K3), with storage on the order of O(K2).

We can now compare the experimental results of the optimal allocation algorithm
with the polynomial approximation RD bound obtained using an oracle; however,
since here the interest also lies in very low bit rates, we need to somehow refine the
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Figure 6. Approximations provided by the dynamic segmentation algorithm corresponding to
points A, B and C on the RD curve in figure 5.

bound in (3.17). In fact, under severe rate constraints, there might not be enough
bits to encode the exact structure of the function, and the dynamic algorithm will
be forced to use a coarse segmentation in which several contiguous polynomial pieces
are approximated by just one model; in the limit, when the rate goes to zero, the
approximation error approaches the integral of s2(t) over the entire support of the
function. This is not reflected by equation (3.17), where the expression for the error
always assumes M distinct pieces. By approximating the maximum error by 4A2T ,
we can define a more appropriate RD bound for the polynomial case as

D′
P (R) = min{4A2T,DP (R)}. (4.10)

Figure 5 shows the numerical results obtained for a set of piecewise polynomial func-
tions as in the previous experiment; the underlying sampling is, however, coarser
here (K = 28), due to the heavier computational load. As before, the solid line indi-
cates the new theoretical upper bound and the dashed line the RD performance of
the dynamic algorithm. It is also interesting to look more in detail at the segmenta-
tion/allocation choices performed by the algorithm for different bit rate constraints;
this is displayed in figure 6a–c with respect to the RD points A, B and C marked
by circles in figure 5. In figure 6 the thin line shows the original piecewise polyno-
mial function while the thick lines show the algorithmic results; while not always
very intuitive, these low-bit-rate approximations are nonetheless optimal in an MSE
sense.

5. Conclusions

We have derived two operational upper bounds for the coding of piecewise polynomial
functions. The results show the large superiority, especially at high bit rates, of a
coding method based on direct polynomial modelling; this method is, however, much
more expensive computationally, and its advantages are not immediately apparent
in a low-rate fast compression framework. Yet, these bounds are concerned mainly
with the operational way in which the coded data are represented rather than with
the way the data are coded (wavelets versus polynomials) and the main lesson is
that there is still room for gains once the peculiar properties of the expansion are
taken into account; in particular, in a wavelet coding scenario, the vanishing moment
property should influence the way the coefficients are coded. This is where our current
research efforts are aimed at.

As a final note, we can ask ourselves two further questions: how does this frame-
work extend to real-world signals, which are clearly not exactly piecewise polynomial?
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Figure 7. Piecewise polynomial approximations of a line of Lena.

And more, can this framework be applied and compared to practical coding scenar-
ios in which wavelets are known to perform very well, such as image compression?
Unfortunately, dynamic programming techniques do not work for two-dimensional
problems, and it is not clear how to fit polynomial surfaces in a globally optimal
way. Yet, we can gain some intuition about both questions by looking at figure 7a, b.
The thin line represents a single line of the ‘Lena’ image, for a total of 256 pixels;
the thick lines are the piecewise polynomial approximations of the data, at increas-
ing rates, obtained with the dynamic segmentation algorithm introduced above. We
could argue that, for increasing bit rates, the algorithm captures more and more
finely the local polynomial trends underlying the image surfaces, while the finer
details can be represented as an additive noise-like residual. Whether this can lead
to an efficient approximation scheme for images is, however, hard to say at present.

Appendix A. Local Legendre expansion

Legendre polynomials are usually defined over the [−1, 1] interval by the recurrence
relation

(n + 1)L(n + 1; t) = (2n + 1)t L(n; t) − nL(n − 1; t), (A 1)

where L(n; t) is the Legendre polynomial of degree n, and they constitute an orthog-
onal basis for L[−1, 1].

A local Legendre expansion over the interval I = [α, β] can be obtained by defining
a translated set of orthogonal polynomials:

LI(n; t) = L

(
n;

2
β − α

t − α + β

β − α

)
; (A 2)

the orthogonality relation becomes
∫ β

α

LI(n; t)LI(m; t) dt =
β − α

2n + 1
δ(n − m), (A 3)
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and for any polynomial p(t) of degree N over [α, β], we can write

ln =
∫ β

α

LI(n; t)p(t) dt, n = 0, . . . , N, (A 4)

p(t) =
N∑

n=0

2n + 1
β − α

lnLI(n; t). (A 5)

Appendix B. Estimate of the series truncation error

The estimate in (3.29) can be obtained as follows: assume that at scale j0 the step
discontinuity at t0 falls within the interval [h2−j0 , (h + 1)2−j0) for some h. Then in
the Haar wavelet series for s(t) the indices of the non-zero coefficients cj,k for j > j0
satisfy

h2j−j0 � k < (h + 1)2j−j0 . (B 1)

The wavelet set {ψj,k(t)} with j and k as above form an orthonormal basis for the
[h2−j0 , (h + 1)2−j0) interval minus the addition of a scaling function ϕ(t) = 2j0/2

over the same interval. We can therefore write

Dt =
∞∑

j=0

(h+1)2j−j0−1∑
k=h2j−j0

c2j,k =
∫ (h+1)2j−j0

h2−j0

s2(t) −
[
2−j0/2

∫ (h+1)2j−j0

h2−j0

s(t)
]2

, (B 2)

where we have used Parseval’s identity. Now consider the location of the step (see
figure 1b) and let τ = t0 − h2−j0 ; we can safely assume that τ ∈ U [0, 2−j0 ] and we
can rewrite (B 2) as a combination of simple area measures involving τ and x1,2,
the values of s(t) left and right of the jump, respectively, which are independent
uniformly distributed variables over [−1

2 ,
1
2 ]:

Dt = τx2
1 + (2−j0 − τ)x2

2 − 2j0(τ2x2
1 + (2−j0 − τ)2)x2

2 + 2τ(2−j0 − τ)x1x2. (B 3)

By taking expectations over these independent quantities we finally have

E[Dt] = ( 1
36)2

−j0 . (B 4)
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